Abstract

Abstract. Using an observing system simulation experiment (OSSE), we investigate the potential soil moisture retrieval capability of the National Aeronautics and Space Administration (NASA) Aquarius radiometer (L-band 1.413 GHz) and scatterometer (L-band, 1.260 GHz). We estimate potential errors in soil moisture retrievals and identify the sources that could cause those errors. The OSSE system includes (i) a land surface model in the NASA Land Information System, (ii) a radiative transfer and backscatter model, (iii) a realistic orbital sampling model, and (iv) an inverse soil moisture retrieval model. We execute the OSSE over a 1000 × 2200 km2 region in the central United States, including the Red and Arkansas river basins. Spatial distributions of soil moisture retrieved from the radiometer and scatterometer are close to the synthetic truth. High root mean square errors (RMSEs) of radiometer retrievals are found over the heavily vegetated regions, while large RMSEs of scatterometer retrievals are scattered over the entire domain. The temporal variations of soil moisture are realistically captured over a sparely vegetated region with correlations 0.98 and 0.63, and RMSEs 1.28% and 8.23% vol/vol for radiometer and scatterometer, respectively. Over the densely vegetated region, soil moisture exhibits larger temporal variation than the truth, leading to correlation 0.70 and 0.67, respectively, and RMSEs 9.49% and 6.09% vol/vol respectively. The domain-averaged correlations and RMSEs suggest that radiometer is more accurate than scatterometer in retrieving soil moisture. The analysis also demonstrates that the accuracy of the retrieved soil moisture is affected by vegetation coverage and spatial aggregation.

Highlights

  • Soil moisture is a key land surface state variable and plays a crucial role in the variability of water and energy cycles (Koster et al, 2004)

  • Several studies have been dedicated to adopting observing system simulation experiments (OSSEs; Masutani et al 2006) to evaluate the reliability of soil moisture retrievals from the Hydrosphere State (Hydros) mission (Crow et al, 2005; Zhan et al, 2006)

  • This study aims to investigate soil moisture retrieval capabilities from the Aquarius satellite, which is a new National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder mission launched in June 2011

Read more

Summary

Methods and Data

Y. Luo1, X. Feng2, P. Houser2, V. Anantharaj3, X. Fan4, G. De Lannoy5, X. Zhan6, anEdaLr.tDhabSbyirsu3tem Received: 21 June 2012 – Published in Geosci. Instrum. Method. Data Syst. Discuss.: 13 July 2012 Revised: 1 February 2013 – Accepted: 1 February 2013 – Published: 20 February 2013

Introduction
Aquarius instrument and OSSE
Simulation domain and design
Soil moisture retrieval
Summary
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call