Abstract

The conformational stability and vibrational infrared and Raman spectra of trichloroacetyl isocyanate (CCl3CONCO) were investigated by ab initio MP2 and density functional B3LYP calculations using the 6-311++G** basis set. From the potential energy scans of the internal rotations in both the halomethyl and the isocyanate rotors, the molecule was predicted to exist predominantly in the cis-cis conformation. The steric hindrance between the halomethyl group and the nitrogen lone-pair was found to favor the staggered configuration for the chlorine atom, while conjugation effects favor the planar configuration for the C=O and the NCO groups. Vibrational wavenumbers were computed for the molecule at the DFT-B3LYP/6-311++G** level. Normal coordinate calculations were carried out to obtain the potential energy distributions (PED) among the symmetry coordinates of the normal modes for the molecule. The theoretical vibrational assignments were compared with experimental ones and ratios of observed to calculated wavenumbers of about 0.97-1.04 were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.