Abstract

The rate of infertility is increasing owing to genetic and environmental factors. Consequently, assisted reproductive technology has been introduced as an alternative. Bearing in mind the global trend toward the transfer of only one embryo, there is an increasing trend for assessing embryo quality before transfer through prenatal genetic diagnosis (PGD) tests. This ensures that the best-quality embryos are implanted into the uterus. In the invitro fertilization cycle, PGD is not only used for diseases or quality checks before embryo freezing but also for evaluating unfortunate risks, such as aneuploidy, signs of early abortions, and preterm birth. However, traditional preimplantation genetic testing and screening approaches are invasive and harm the health of both the mother and embryo, raising the risk of miscarriage. In the last decade, embryonic extracellular vesicles (EVs) have been investigated and have emerged as a promising diagnostic tool. In this mini-review, we address the use of EVs as a noninvasive biomarker in PGD to test for biological hazards within the embryo without invading its cells. We summarize the state-of-the-art in the use of the embryo's EV content, genomic DNA, messenger RNA, and microRNA in the spent culture medium and their relationship with embryo quality, successful implantation, and pregnancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call