Abstract

To investigate the association between polymorphisms of DNA repair genes and xenobiotic with acute adverse effects in locally advanced rectal cancer patients treated with neoadjuvant radiochemotherapy. Sixty-seven patients were analyzed for the current study. Genotypes in DNA repair genes XRCC1 (G28152A), XRCC3 (A4541G), XRCC3 (C18067T), RAD51 (G315C), and GSTP1 (A313G) were determined by pyrosequencing technology. The observed grade ≥3 acute toxicity rates were 23.8%. Chemotherapy and radiotherapy were interrupted for 46 and 14 days, respectively, due to critical complications. Four patients were hospitalized, 6 patients had been admitted to the ER, and 5 patients received invasive procedures (2 bladder catheters, 2 blood transfusions, and 1 growth factor therapy).RAD51 correlated with acute severe gastrointestinal toxicity in heterozygosity (Aa) and homozygosity (AA) (P=0.036). Grade ≥3 abdominal/pelvis pain toxicity was higher in the Aa group (P=0.017) and in the Aa+AA group (P=0.027) compared with homozygous (aa) patients. Acute skin toxicity of any grade occurred in 55.6% of the mutated patients versus 22.8% in the wild-type group (P=0.04) for RAD51. XRCC1 correlated with skin toxicity of any grade in the Aa+AA group (P=0.03) and in the Aa group alone (P=0.044). Grade ≥3 urinary frequency/urgency was significantly higher in patients with AA (P=0.01), Aa (P=0.022), and Aa+AA (P=0.031) for XRCC3 compared with aa group. Our study suggested that RAD51, XRCC1, and XRCC3 polymorphisms may be predictive factors for radiation-induced acute toxicity in rectal cancer patients treated with preoperative combined therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call