Abstract
The need to prevent the development of acid mine drainage (AMD) by oxidation of pyrite has triggered numerous investigations into the mechanisms of its oxidation. According to Frontier molecular orbital (FMO) theory, the surface-exposed sulfur atom of pyrite possesses an unshared electron pair which produces a slightly negatively charged pyrite surface that can attract cations such as Fe{sup 2+}. Because of surface electroneutrality and pH considerations, however, the pyrite surface Fe{sup 2+} coordinates OH. The authors proposed that this surface Fe{sup 2+} OH when in the presence of CO{sub 2} is converted to {minus}FeCO{sub 3} or {minus}FeHCO{sub 3}, depending on pH. In this study, using Fourier transform infrared spectroscopy (FT-IR) they demonstrated that such complexes form on the surface of pyrite and continue to persist even after a significant fraction of the surface Fe{sup 2+} was oxidized to Fe{sup 3+}. FT-IR spectra also showed the presence of two carbonyl absorption bands (1,682 and 1,653 cm{sup {minus}1}) on the surface of pyrite upon exposure to CO{sub 2} which suggested that pyrite surface carbon complexes existed in two different surface chemical environments, pointing out two potential mechanisms of pyrite surface-CO{sub 2} interactions. One potential mechanism involved formation of a pyrite surface-Fe(II)HCO{sub 3}more » complex, whereas a second potential mechanism involved formation of a pyrite surface-carboxylic acid group complex [{minus}Fe(II)SSCOOFe-(II)].« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.