Abstract
The blood-brain barrier (BBB) is a barrier of the central nervous system (CNS), which can restrict the free exchange of substances, such as toxins and drugs, between cerebral interstitial fluid and blood, keeping the relative physiological stabilization. The brain capillary endothelial cells, one of the structures of the BBB, have a variety of ATP-binding cassette transporters (ABC transporters), among which the most widely investigated is Pglycoprotein (P-gp) that can efflux numerous substances out of the brain. The expression and activity of P-gp are regulated by various signal pathways, including tumor necrosis factor-α (TNF-α)/protein kinase C-β (PKC- β)/sphingosine-1-phosphate receptor 1 (S1P), vascular endothelial growth factor (VEGF)/Src kinase, etc. However, it remains unclear how hypoxic signaling pathways regulate the expression and activity of P-gp in brain microvascular endothelial cells. According to previous research, hypoxia affects the expression and activity of the transporter. If the transporter is up-regulated, some drugs enter the brain's endothelial cells and are pumped back into the blood by transporters such as P-gp before they enter the brain tissue, consequently influencing the drug delivery in CNS; if the transporter is down-regulated, the centrally toxic drug would enter the brain tissue and cause serious adverse reactions. Therefore, studying the mechanism of hypoxia-regulating P-gp can provide an important reference for the treatment of CNS diseases with a hypoxia/reoxygenation (H/R) component. This article summarized the mechanism of regulation of P-gp in BBB in normoxia and explored that of hypoxia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.