Abstract

In this study, we examined spatial patterns of chloroplast DNA (cpDNA) variation in a total of 30 populations of Castanopsis carlesii Hayata (Fagaceae), a subtropical and temperate tree species, including 201 individuals sampled throughout Taiwan. By sequencing two cpDNA fragments using universal primers (the trnL intron and the trnV-trnM intergenic spacer), we found a total of 1663 bp and 21 polymorphic sites. These gave rise to a total of 28 cpDNA haplotypes. The level of differentiation among the populations studied was relatively high (GST = 0.723). Two ancestral haplotypes are widely distributed. The Central Mountain Ridge (CMR) of Taiwan represents an insurmountable barrier to the east-west gene flow of C. carlesii. Among the populations studied, three separated populations, at Lienhuachih, Fushan and Lichia, have high nucleotide diversity. Estimates of NST-GST for populations on both sides of the CMR indicate that no phylogeographical structure exists. According to the genealogical tree, number of rare haplotype and population genetic divergence, this study suggests that two potential refugia existed during the last glaciation: the first refugium was located in a region to the north of Hsuehshan Range (HR) and west of the CMR; the second refugium was located in south, especially southeastern Taiwan. In fact, the second refugium happens to be the same as that reported for Quercus glauca. A 'star-like' genealogy is characteristic when all haplotypes rapidly coalesce and is a general outcome of population expansion. The neutrality test and mismatch distribution also suggest demographic expansion recovering from a bottleneck.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.