Abstract

ABSTRACT Our understanding of the significance and abundance of sedimentary strata on Mars has increased considerably during the last decade. The highly cratered surface of Mars leads to the prediction that impact ejecta deposits, possibly containing accretionary lapilli, should be part of the sediment record. While no impact-induced base surge deposits have been confirmed on Mars, it is likely that they will one day be discovered, and it is important to establish criteria for their recognition in the rock record. The recognition of ejecta deposits containing accretionary lapilli on Mars requires reliable facies models developed from known impact-generated strata on Earth. Sections through ejecta layers formed by the 1850 Ma Sudbury impact event provide data to begin development of such models. These deposits are laterally variable but generally show a vertical decrease in lithic clast size and, where present, an upward fining in accretionary lapilli. In thicker deposits, the accretionary lapilli–bearing portion of sections generally progresses upward from decimeter-scale beds of clast-supported lapilli interlayered with centimeter-scale sandstone beds, to parallel and undulatory laminated lapilli, and sandstones. These are overlain by lapilli stringers and isolated lapilli in parallel-laminated to cross-stratified sandstone. Both grain size and sedimentary structures indicate a succession deposited by an impact-generated base surge during decelerating flow. Thinner deposits of ejecta, possibly laid down on topographic highs, are commonly massive with reverse and normal grading. We compare the accretionary lapilli–bearing strata in the Sudbury ejecta deposits to proposed impact-generated base surge deposits in the Burns formation at Meridian Planum, Mars. Units comprising the Burns formation do not have the internal organization of spherule-bearing layers exhibited by the Sudbury ejecta deposits. Comparison with Sudbury ejecta layers and theoretical considerations indicate that the spherules developed in the Burns formation do not represent grains deposited by a base surge and are most likely diagenetic in origin. However, impact ejecta layers should be present in the sedimentary successions on Mars, and comparison with similar strata on Earth may lead to their eventual identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.