Abstract

Investigated mitigating effects of sodium butyrate (SB) on the inflammatory response, oxidative stress, and growth inhibition of common carp (Cyprinus carpio) (2.94 ± 0.2g) are caused by glycinin. Six isonitrogenous and isoenergetic diets were prepared, in which the basal diet was the control diet and the Gly group diet contained 80g/kg glycinin, while the remaining 4 diets were supplemented with 0.75, 1.50, 2.25, and 3.00g/kg SB, respectively. The feeding trial lasted for 8weeks, and the results indicated that supplementing the diet with 1.50-2.25g/kg of SB significantly improved feed efficiency and alleviated the growth inhibition induced by glycinin. Hepatopancreas and intestinal protease activities and the content of muscle crude protein were significantly decreased by dietary glycinin, but supplement 1.50-2.25g/kg SB partially reversed this result. SB (1.50-2.25g/kg) increased the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the hepatopancreas and reduced the activities of AST and ALT in the serum. Glycinin significantly reduced immune and antioxidant enzyme activities, whereas 1.50-2.25g/kg SB reversed these adverse effects. Furthermore, compared with the Gly group, supplement 1.50-2.25g/kg SB eminently up-regulated the TGF-β and IL-10 mRNA, and down-regulated the IL-1β, TNF-α, and NF-κB mRNA in hepatopancreas, mid-intestine (MI), and distal intestine (DI). Meanwhile, supplement 1.50-2.25g/kg SB activated the Keap1-Nrf2-ARE signaling pathway and upregulate CAT, SOD, and HO-1 mRNA expression in hepatopancreas, MI, and DI. Summarily, glycinin induced inflammatory response, and oxidative stress of common carp ultimately decreased the digestive function and growth performance. SB partially mitigated these adverse effects by activating the Keap1-Nrf2-ARE signaling pathway and inhibiting the NF-κB signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.