Abstract

An automated sample introduction system, utilizing a demountable direct injection high-efficiency nebulizer (d-DIHEN), is successfully incorporated for the first time with an inductively coupled plasma optical emission spectrometer (ICP-OES) for the measurement of the phosphorus content in acid-digested nucleotides and deoxyribonucleic acid (DNA). With this experimental setup, the solution uptake rate and volume are reduced from 170 to 30 microL min(-1) and from 10 to 2.4 mL, respectively, thereby reducing the required DNA sample mass for solutions containing 3 microg g(-1) P from 300 to 72 microg of DNA, in comparison to previous analyses in our laboratory using a glass concentric nebulizer with cyclonic spray chamber arrangement. The use of direct injection also improves P (I) 213.617 nm sensitivity by a factor of 4 on average. A high-performance (HP) methodology in combination with the previous sample introduction system and ICP-OES provides simultaneous, time-correlated internal standardization and drift correction resulting in relative expanded uncertainties (% U) for the P mass fractions in the range of 0.1-0.4 (95% confidence level) for most of the thymidine 5'-monophosphate (TMP), calf thymus DNA (CTDNA), and plasmid DNA (PLDNA) analyses. The d-DIHEN with HP-ICP-OES methodology allows for the quantification of DNA mass at P mass fractions as low as 0.5 microg g(-1), further reducing the required DNA mass to 12 microg, with small uncertainty (< or = 0.4%). This successful approach will aid in the development and certification of nucleic acid certified reference materials (CRMs), particularly for these samples that are typically limited in volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.