Abstract

AbstractAny skillful prediction is of great benefit to North China, a region that is densely populated and greatly impacted by droughts. This paper reports potential predictability of North China summer drought 1 month ahead based on hindcasts for 1961–2005 from the “ENSEMBLES” project. Correlation scores of the standardized precipitation–evapotranspiration index and standardized precipitation index reach 0.49 and 0.39, respectively. The lower-level northwestern Pacific cyclonic circulation anomaly (NWPCCA) and East Asian upper-tropospheric temperature (UTT) cooling are the crucial circulations with regard to summer drought. Two sources of predictability are identified: 1) Pacific–Japan and Silk Road teleconnections forced by well-established eastern Pacific Ocean El Niño sea surface temperature anomalies (SSTA) in summer, when the two key circulations are both well predicted because of a good prediction of enhanced equatorial central Pacific (CP) rainfall and Indian rainfall deficit, and 2) the subtropical atmosphere–ocean coupling associated with CP El Niño developing, when the skill mainly arises from the reasonable prediction of NWPCCA. In observations, the NWPCCA persists from the preceding spring to summer through a wind–evaporation–SST feedback related to the Pacific meridional mode (PMM). In predictions, the persistence of the NWPCCA is mainly forced by the enhanced convection over the subtropical central North Pacific due to the persistence of the PMM-related meridional SSTA gradient over the CP. This predicted SSTA suppresses the equatorial Pacific rainfall, contributing to low prediction skill for the East Asian UTT cooling. This study demonstrates the importance of extratropical signals from the preceding season in North China summer drought prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call