Abstract

Wireless Sensor Network (WSN) has appeared as a powerful technological platform with tremendous and novel applications. Now-a-days, monitoring and target tracking are the most major application in WSNs. In target based WSN, coverage and connectivity are the two most important issues for definite data forwarding from every target to a remote base station. An NP entire issue is to find least number of potential or possible locations to set sensor nodes gratifying both coverage and connectivity from a given a group of target points. In this article, we propose an Oppositional Gravitational Search algorithm (OGSA) based approach to solve this problem. This approach helps that the sensor nodes are prone to failure, the proposed system provides l-coverage to all targets and n-connectivity to each sensor node. This OGSA based system is presented with agent representation, derivation of efficient fitness function along with the usual Gravitational Search algorithm operators. The approach is simulated broadly with various scenarios of Wireless Sensor Network. The experimentation results are compared with some relevant existing algorithms to demonstrate the efficiency of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call