Abstract

Both coronary and endocardial endothelium regulate cardiac contractile function via paracrine pathways. We investigated whether pericardial fluid (PF) and pericardial mesothelial cells (PMC) could exert a similar paracrine action. Both PF and PMC were extracted from sheep pericardial space. Endothelin-1, prostaglandins and atrial natriuretic factor were measured in PF in vivo. In the other hand, PMC were grown on T-75 flasks and microcarrier beads to investigate endothelin-1, nitric oxide and prostaglandin pathways in vitro. In addition, effects of PF and PMC effluent were tested on adult rat cardiac myocyte contraction in vitro. In vitro, cultured PMC expressed endothelin-1 mRNA but not the endothelial nitric oxide synthase III, and released endothelin-1 and prostaglandins. Both PF and cultured PMC superfusate induced a potent, rapidly reversible decrease in the shortening of isolated rat cardiac myocytes. This effect was not associated with changes in intracellular calcium. In vivo, prostaglandins, atrial natriuretic factor and endothelin were present in PF. A greater concentration of atrial natriuretic factor was present in PF than in serum, suggesting molecular diffusion from the myocardium to PF. Preliminary results show that the instillation of vasoactive agents into the pericardial space of dogs rapidly alter coronary and systemic vascular tone, consistent with a molecular diffusion of these substances from PF into the myocardium and circulation. In addition to its mechanical role, the pericardium may contribute to the integration and the regulation of cardiovascular function via a paracrine mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.