Abstract
Indicators based on evapotranspiration (ET) provide useful information about surface water status, response of vegetation to drought stress, and potential growth limitations. The capability of ET-based indicators, including actual ET and the evaporative stress index (ESI), to predict crop yields of spring barley and winter wheat was analyzed for 33 districts of the Czech Republic. In this study, the ET-based indicators were computed using two different approaches: (i) a prognostic model, SoilClim, which computes the water balance based on ground weather observations and information about soil and land cover; (ii) the diagnostic Atmosphere–Land Exchange Inverse (ALEXI) model based primarily on remotely sensed land surface temperature data. The capability of both sets of indicators to predict yields of spring barley and winter wheat was tested using artificial neural networks (ANNs) applied to the adjusting number and timeframe of inputs during the growing season. Yield predictions based on ANNs were computed for both crops for all districts together, as well as for individual districts. The root mean square error (RMSE) and coefficient of determination (R2) between observed and predicted yields varied with date within the growing season and with the number of ANN inputs used for yield prediction. The period with the highest predictive capability started from early-June to mid-June. This optimal period for yield prediction was identifiable already at the lower number of ANN inputs, nevertheless, the accuracy of the prediction improved as more inputs were included within ANNs.The RMSE values for individual districts varied between 0.4 and 0.7 t ha–1 while R2 reached values of 0.5–0.8 during the optimal period. Results of the study demonstrated that ET-based indicators can be used for yield prediction in real time during the growing season and therefore have great potential for decision making at regional and district levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.