Abstract

This paper reports the use of waste oyster shells as a novel biofiller for hot-mix asphalt (HMA) pavement applications. The effects of different fractions (e.g., 0, 5, 10, 15 wt %) of oyster shell powder (OSP) on the bitumen performance were investigated. The chemical properties of unfilled and OSP-filled asphalts were characterized by means of thin layer chromatography-ionization detection (TLC-FID), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Thermal characteristics were examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Physical and rheological properties were assessed through penetration, softening point, ductility, and dynamic shear rheometer (DSR) tests. Results showed that OSP addition increased the resins content, as well as the stiffness of blends. No obvious reactions have occurred between the filler and the asphalt. A higher dose of OSP altered the morphology of the binder, whereas lower and intermediate doses improved its thermal stability and enhanced its low-temperature, rutting, and fatigue performances with respect to the plain asphalt. Overall, the waste oyster shells could be used as filler substitute, not only to improve the quality of road pavements but also to reduce the cost of their construction and solve the waste disposal problems.

Highlights

  • Hot-mix asphalt (HMA) is a heterogeneous multiphase material that consists of aggregates with different sizes and shapes, asphalt cement, and air voids

  • To recover the oyster shell waste (OSW) for potential use, engineers, researchers, generators, and regulators need to be aware of the properties of these materials, how they can be used, and what limitations may be associated with their use

  • Fourier Transform-Infrared Spectroscopy (FT-IR) and X-ray diffraction (XRD) data demonstrated that no apparent reactions have occurred between the inorganic filler and the asphalt cement

Read more

Summary

Introduction

Hot-mix asphalt (HMA) is a heterogeneous multiphase material that consists of aggregates with different sizes and shapes, asphalt cement, and air voids. Aggregates in HMA can be divided into three types according to their size: coarse aggregates, fine aggregates, and mineral filler. Coarse aggregates are generally defined as those retained on the 2.36-mm sieve. Fine aggregates are those that pass through the 2.36-mm sieve and are retained on the 0.075-mm sieve. Mineral filler is defined as that portion of the aggregate passing the

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.