Abstract

With the advent of nano-technology, medical sensors and devices are becoming highly miniaturized. Consequently, the number of sensors and medical devices being implanted to accurately monitor and diagnose a disease is increasing. By measuring the symptoms and controlling a medical device as close as possible to the source, these implantable devices are able to save lives. A wireless link between medical sensors and implantable medical devices is essential in the case of closed-loop medical devices, in which symptoms of the diseases are monitored by sensors that are not placed in close proximity of the therapeutic device. Medium Access Control (MAC) is crucial to make it possible for several medical devices to communicate using a shared wireless medium in such a way that minimum delay, maximum throughput, and increased network life-time are guaranteed. To guarantee this Quality of Service (QoS), the MAC protocols control the main sources of limited resource wastage, namely the idle-listening, packet collisions, over-hearing, and packet loss. Traditional MAC protocols designed for body sensor networks are not directly applicable to Implantable Body Sensor Networks (IBSN) because of the dynamic nature of the radio channel within the human body and the strict QoS requirements of IBSN applications. Although numerous MAC protocols are available in the literature, the majority of them are designed for Body Sensor Network (BSN) and Wireless Sensor Network (WSN). To the best of our knowledge, there is so far no research paper that explores the impact of these MAC protocols specifically for IBSN. MAC protocols designed for implantable devices are still in their infancy and one of their most challenging objectives is to be ultra-low-power. One of the technological solutions to achieve this objective so is to integrate the concept of Wake-up radio (WuR) into the MAC design. In this survey, we present a taxonomy of MAC protocols based on their use of WuR technology and identify their bottlenecks to be used in IBSN applications. Furthermore, we present a number of open research challenges and requirements for designing an energy-efficient and reliable wireless communication protocol for IBSN.

Highlights

  • The human population is growing at an alarming rate

  • We present a taxonomy of Medium Access Control (MAC) protocols based on their use of Wake-up radio (WuR) technology and identify their bottlenecks to be used in Implantable Body Sensor Networks (IBSN) applications

  • We primarily focus on the MAC protocols that are applicable to IBSN

Read more

Summary

Introduction

The human population is growing at an alarming rate. This rapidly growing population has resulted in new health problems due to various factors such as demographic aging, rapid urbanization, and the spread of unhealthy lifestyles. According to the World Health Organization (WHO), non-communicable diseases, such as cardiovascular disease, cancer, diabetes and chronic lung diseases, Sensors 2016, 16, 2012; doi:10.3390/s16122012 www.mdpi.com/journal/sensors. Sensors 2016, 16, 2012 have overtaken infectious diseases as the world’s leading cause of mortality [1]. Innovations in the health-care industry are continuously emerging to monitor, treat and reduce the death and disability caused by such non-communicable diseases. The size of the sensor nodes is being reduced, which allows them to be implanted inside the body using minimal invasive surgery. The advantage of being closer to the cause of a disease will increase the understanding of the pathological symptoms of the disease [3]

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call