Abstract

The integration of plug-in electric vehicles (PEVs) to a power system leads to significant impacts on the electricity distribution infrastructure, and coping with the charging demand of high PEV penetration in an existing distribution network is an important concern. This paper provides a comprehensive study on using multiterminal low-voltage direct current (MT-LVDC) to connect multiple feeders or transformers, which can solve network constraints efficiently to improve the ability of the power supply for more PEV integration. This paper proposes an adaptive droop control for the MT-LVDC distribution system and presents a probabilistic evaluation method to analyze the PEV integration capacity. To illustrate the potential of using MT-LVDC to improve PEV integration in an existing distribution network, a case study is performed, and the results show that MT-LVDC based on the proposed adaptive droop control can share the charging power demand during steady-state and dynamic conditions between multiple feeders or transformers. The ability of MT-LVDC to improve the PEV integration capacity and cost can be evaluated effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.