Abstract

ABSTRACT Forest canopy structure is an important parameter in multipurpose forest management. An understanding of forest structure plays a particularly important role in the management of uneven-aged forests. The identification of vertical and horizontal variations in forest canopy structure using a ground-based survey is resource intensive, hence often demands for alternative data sources. In this study, one of the advanced remote sensing (RS) techniques, i.e. digital aerial photogrammetry was used to characterize forest canopy structure in a mixed conifer–broadleaf forest. We used aerial imagery acquired with a fixed-wing unmanned aerial vehicle (UAV) platform to produce RS metrics that could be used to classify and map forest structure types at landscape scale. Our results demonstrated that few structural and spectral metrics derived from UAV photogrammetric data, e.g. mean height, standard deviation of height, canopy cover, and percentage broadleaf vegetation cover, could characterize the forest structure across landscapes, particularly at the forest management compartment level, in a limited amount of time. We used cluster analysis for classification of forest structure types and identified five forest structure classes with varying levels of forest canopy structural complexity: (1) short, open-canopy, conifer-dominated structure; (2) short, dense-canopy, broadleaf-dominated structure; (3) tall, closed-canopy, broadleaf-dominated structure; (4) very tall, closed-canopy, conifer-dominated structure with a relatively high degree of variation in canopy height; and (5) very tall, closed-canopy, conifer-dominated structure with a relatively low degree of variation in canopy height. These classes showed relationships with forest management activities (e.g. selection harvesting) and natural disturbances (e.g. typhoon damage). Spatial distribution of forest canopy structural complexity that was revealed in this study is capable of providing important information for forest management planning and habitat modelling. Further, the simple, and flexible data-driven method used in this study to characterize forest structure has the potential to be applied with necessary changes over larger landscapes and different forest types for characterizing and mapping forest structural complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.