Abstract

Reliable knowledge of the thermophysical properties of pure compounds and their mixtures in the whole composition and a wide temperature and pressure range is a vital prerequisite for the computer aided synthesis, design and optimization of chemical processes. At the beginning of the development of thermodynamic models, the main interest was directed to the development of predictive g E-models for vapor–liquid equilibria (VLE) of subcritical compounds. Today group contribution equations of state are available which can also handle supercritical compounds, very asymmetric systems and even systems with strong electrolytes. These sophisticated models together with factual data banks (e.g. the Dortmund Data Bank) are powerful software tools for the reliable development of chemical processes and other applications of industrial interest. In this paper, the status of the different approaches and important applications of industrial interest using thermodynamic information derived from factual data banks or by using sophisticated predictive thermodynamic models will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.