Abstract

Vascular dysfunction is associated with onset of cardiovascular disease (CVD). Its effect is reflected as temperature change on the skin. The aim of this work was to test the potential of thermal imaging as cost effective screening tool for prediction of CVD. Thermal imaging of various parts of the subject (N = 80, male/female =44/36, aged 25-75 years) was done using noncontact infrared (IR) camera. In each subject, total cholesterol (TC; mg/dl) and high-density lipoprotein (HDL, mg/dl) were measured according to standard biochemical analysis. Based on National Cholesterol Education Program ATP III criteria, subject with known CVD (N = 16) and age- and sex- matched normal subjects (N = 21) were included in the study. The average surface temperature of various parts from head to toe was calculated and statistical analysis was performed between the groups. In the total population (N = 37), correlation study shows TC (mg/dl) was correlated with measured surface temperature of the following regions: Temporal left (r = −0.316) and right (r = −0.417), neck left (r = 0.347) and right (r = −0.410), and hand left (r = 0.387). HDL (mg/dl) was found to be correlated with measured surface temperature of the following regions: Temporal left (r = 0.445) and right (r = 0.458), hand left (r = −0.470), and foot anterior left (r = −0.332) and right (r = −0.336). Temperature asymmetry was more significant in upper extremity in CVD group. Using the surface temperature, regression models were calculated for noninvasive estimation of TC and HDL. The predictive ability of measured surface temperature for TC and HDL was 60%. The model for noninvasive estimation gave sensitivity and specificity value of 79 and 83% for TC and 78 and 81% for HDL, respectively. Thus, the surface temperature can be one of the screening tools for prediction of CVD. The limitation of the present study is also discussed under future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.