Abstract

To exploit the enterocin regulatory system for regulated expression of genes in Enterococcus. Production of some pediocin-like bacteriocins such as enterocin A in Enterococcus is regulated by a three-component system comprising a histidine kinase (entK ), a response regulator (entR) and an induction factor (entF ). Exposure to the induction factor results in the transcription of gene(s) under the control of the enterocin A promoter, including entA which encodes the bacteriocin. In an effort to exploit this system for expression of genes in Enterococcus, a number of vectors were constructed which contain the entA promoter followed by convenient cloning sites to introduce gene(s) of interest. These vectors were used in an enterococcal background which does not produce induction factor but does produce both the kinase and regulator proteins. The system was tested using the reporter genes ltnI (lacticin 3147 immunity) and gusA (beta-glucuronidase) under the control of the entA promoter. Upon addition of the induction factor, the beta-glucuronidase activity increased 20-fold when compared with uninduced cells. In addition, concentrations of as little as 0.2 nm synthetic EntF were sufficient to give maximal expression. The potential benefit of having an expression system based on EntF is that gene expression can be finely controlled upon addition of low concentrations of a peptide that can easily be artificially synthesized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.