Abstract

The mechanical behavior in cross biaxial tension was investigated for two metallic sheets, an aluminium alloy and a dual phase steel. The heterogeneous strain field in the central gauge area of a cruciform specimen was analyzed by digital image correlation. Minor and major strains were output along several paths, for a given load level just before necking, showing a wide range of strain states, from uniaxial tension to biaxial state. The applied loads along the two loading directions were also recorded, the gap between the two signals being all the most important that the material anisotropy was significant. Moreover, the strain path ratio, defined as the ratio of the minor strain over the major strain, exhibited a sensible non-monotonic evolution along the transverse direction, compared to the rolling direction. Finally, a material parameter identification process with only biaxial tensile test for Bron and Besson anisotropic yield model was proposed, based on the minimization of experimental and numerical principal strains along a specified path in the gauge area of the cruciform specimen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.