Abstract

AbstractConverting the toxic air pollutant N2O into less harmful gas has potential advantages. Herein, the feasibility of the N2O reduction reaction over pristine C2N and TM/C2N (TM = V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) monolayers are explored by density functional theory calculations with Grimme‐D3 correction. The results reveal that the existence of TM atoms indeed improves the adsorption performance of C2N, where the TM atoms act as both electron acceptors and donors, favoring the activation of N2O and CO molecules. Based on thermal stability, selectivity, and catalytic activity, TM/C2N (TM = V and Mn) catalysts are screened from the above transition metal atoms. In particular, N2O reduction is a thermodynamically and kinetically favorable pathway, which can take place with negligible energy barriers on V/C2N and Mn/C2N catalysts. The CO2 desorption on V/C2N and Mn/C2N catalysts is the rate‐limiting step with the desorption barrier of only 13.1 and 15.1 kcal mol−1, respectively. These results suggest that the screened TM/C2N (TM = V and Mn) materials can be used as promising catalysts for the adsorption and reduction of environmentally unfriendly N2O molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call