Abstract

There is widespread use of nuclear radiation for medical imagery and treatments. Worldwide, almost 40 million treatments are performed per year. There are also applications of radiation sources in other commercial fields, e.g., for weld inspection or steelmaking processes, in consumer products, in the food industry, and in agriculture. The large number of neutrons generated in a fusion reactor such as DEMO could potentially contribute to the production of the required radioactive isotopes. The associated commercial value of these isotopes could mitigate the capital investments and operating costs of a large fusion plant. The potential of producing various radioactive isotopes was studied from material pieces arranged inside a DEMO equatorial port plug. In this location, they are exposed to an intensive neutron spectrum suitable for a high isotope production rate. For this purpose, the full 3D geometry of one DEMO toroidal sector with an irradiation chamber in the equatorial port plug was modeled with an MCNP code to perform neutron transport simulations. Subsequent activation calculations provide detailed information on the quality and composition of the produced radioactive isotopes. The technical feasibility and the commercial potential of the production of various isotopes in the DEMO port are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.