Abstract

Quantum computing has rapidly advanced in recent years due to substantial development in both hardware and algorithms. These advances are carrying quantum computers closer to their impending commercial utility. Drug discovery is a promising area of application that will find a number of uses for these new machines. As a prominent example, quantum simulation will enable faster and more accurate characterizations of molecular systems than existing quantum chemistry methods. Furthermore, algorithmic developments in quantum machine learning offer interesting alternatives to classical machine learning techniques, which may also be useful for the biochemical efforts involved in early phases of drug discovery. Meanwhile, quantum hardware is scaling up rapidly into a regime where an exact simulation is difficult even using the world’s largest supercomputers. We review how these recent advances can shift the paradigm with which one thinks about drug discovery, focusing on both the promises and caveats associated with each development. In particular, we highlight how hybrid quantum-classical approaches to quantum simulation and quantum machine learning could yield substantial progress using noisy-intermediate scale quantum devices, whereas fault-tolerant, error-corrected quantum computers are still in their development phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.