Abstract

We have established a method of preparing giant plasma membrane vesicles (GPMVs) by using cysteine mutants of the proapoptotic peptide (PAP) Ac-R7-GG-KLAKLAKKLAKLAK. A cysteine scan revealed that cytotoxicity and GPMV formation were dependent on the cysteine position within the PAP sequence. In comparison to GPMVs prepared by extensive treatment with paraformaldehyde (PFA) and dithiothreitol (DTT), our GPMVs were produced from HeLa cells at much lower concentrations of the blebbing agent. We found that only GPMVs derived from cysteine-containing PAP showed lipid phase separation. This membrane model was applied to investigate the phase partitioning of two relevant membrane proteins: influenza virus hemagglutinin (HA) and tetherin, which clamps budding HIV to infected cells. For tetherin, we show for the first time exclusion from cholesterol-rich domains in a GPMV model, thus documenting the potential of our approach for membrane-partitioning studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.