Abstract

The major part of iron present in plant foods such as cereals is largely unavailable for direct absorption in humans due to complexation with the negatively charged phosphate groups of phytate (myo-inositol (1,2,3,4,5,6)-hexakisphosphate). Human biology has not evolved an efficient mechanism to naturally release iron from iron phytate complexes. This narrative review will evaluate the quantitative significance of phytase-catalysed iron release from cereal foods. In vivo studies have shown how addition of microbially derived phytases to cereal-based foods has produced increased iron absorption via enzyme-catalysed dephosphorylation of phytate, indicating the potential of this strategy for preventing and treating iron deficiency anaemia. Despite the immense promise of this strategy and the prevalence of iron deficiency worldwide, the number of human studies elucidating the significance of phytase-mediated improvements in iron absorption and ultimately in iron status in particularly vulnerable groups is still low. A more detailed understanding of (1) the uptake mechanism for iron released from partially dephosphorylated phytate chelates, (2) the affinity of microbially derived phytases towards insoluble iron phytate complexes, and (3) the extent of phytate dephosphorylation required for iron release from inositol phosphates is warranted. Phytase-mediated iron release can improve iron absorption from plant foods. There is a need for development of innovative strategies to obtain better effects.

Highlights

  • Iron deficiency anaemia is the most common nutrition deficiency disorder worldwide and a problem in both developed and developing countries

  • Elimination of meat coupled with high intakes of phytate-rich whole grains is known to lower iron absorption, increasing the risk of iron deficiency [4]

  • CA: Phytate degradation ↑ from 42% in control to 69%; A. fumigatus or E. coli

Read more

Summary

Introduction

Iron deficiency anaemia is the most common nutrition deficiency disorder worldwide and a problem in both developed and developing countries. Low iron intakes and poor iron absorption from the diet are common causes of anaemia with women of the child-bearing age, pregnant mothers, adolescents and the elderly being susceptible [1]. Uptake of non-haem iron from plant foods is lower than that of haem iron from meat products. The main inhibitor of non-haem iron absorption in plant foods is phytic acid (myo-inositol (1,2,3,4,5,6)-hexakisphosphoric acid). The phosphate groups of phytic acid are negatively charged under physiologically relevant conditions, resulting in phytate chelation of cations such as iron and zinc, making these minerals less available for absorption [2,3]. Elimination of meat coupled with high intakes of phytate-rich whole grains is known to lower iron absorption, increasing the risk of iron deficiency [4]. Phytases (mainly enzyme classes E.C. 3.1.3.8, E.C. 3.1.2.26) catalyse release of phosphate from phytate, in turn releasing the chelated minerals

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.