Abstract

Introduction: The transdifferentiation potential of mesenchymal stem cells (MSCs) is not limited to mesodermal derivatives but also to other cell types such as neuronal cells under appropriate cell culture conditions.Materials and methods: The present study characterizes the differentiation of Wharton’s jelly (WJ) derived MSCs using neuronal conditioned medium (NCM) collected from cultured foetal brain cells.Results: After induction with NCM to neuronal stem cells (NSC), the WJ MSCs showed profound morphological changes showing multiple neurites extending from the cell body containing reminiscent of Nissl substance and single long axon-like processes. In RT PCR and immunocytochemistry, the induced neuronal cells showed a strong positive expression of neuronal markers Nestin, β III tubulin and GFAP indicated that, the cells were reactive to NCM for differentiation. A significant (p < 0.01) increase in the level of secretome BDNF was observed in NCM suggests that the BDNF could play a key role in the transdifferentiation of WJMSCs to NSCs.Conclusion: These results support the potential of ovine MSCs isolated from umbilical cord WJ of abattoir derived foetuses to differentiate into neuronal stem cells and also provide a valuable experimental data for NSC transplant research in veterinary medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.