Abstract

The biomaterials with excellent biocompatibility and biodegradability ¬can lead to satisfactory wound healing. In this study, core-shell structured PU (polyurethane)/St (Starch) and PU/St (Hyaluronic Acid (HA)) nanofibers were fabricated with coaxial electrospinning technique. The morphology characterization of the core-shell structure of nanofibers was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Contact-angle measurements were confirmed the core/shell structure of the electrospun nanofibers with shell and core feed rates of 0.675 L/min and <0.135 L/min, respectively. The average fiber diameter values were calculated for polyurethane nanofibers (836 ± 172.13 nm), PU/St nanofibers (612 ± 93.21 nm) and PU/St (HA) nanofibers (428 ± 78.32 nm). The average porosity values of scaffolds were determined for PU (1.251 ± 0.235 μm), PU/St (1.734 ± 0.284 μm) and PU/St (HA) (3.186 ± 0.401 μm). The core-shell PU/St and PU/St (HA) nanofibers were evaluated in vitro by using mouse fibroblasts (L929) cells. Cell morphology and viability results were exhibited significant enhancement in cell promoting and cell attachment. Furthermore, in vivo studies was indicated Core-shell PU/St (HA) wound dressing can be an appropriate candidate for skin tissue engineering and wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.