Abstract

AbstractWater hydraulic systems use water as a pressure medium and, thus, do not pose such adverse environmental impacts as oil hydraulics. Microbial deterioration of the pressure medium and biofouling of the surfaces restrict the applicability of the water‐based technology. The potential of microbial growth control by UV‐irradiation and filtration was studied in a pilot‐scale water hydraulic system. The UV‐irradiation (25 m Ws cm−2) of the pressure medium reduced the total viable counts of bacteria by 1–2 log10 cfu cm−3, whereas the total microbial cell numbers and the numbers of surface‐attached microorganisms remained unaffected. Prefiltration (1.2 µm, absolute) of the pressure medium decreased the total microbial cell number in the water phase and retarded the attachment of bacteria. The filtration during the operation (2 µm, absolute) decreased the total numbers of microbial cells and the total viable counts in the pressure medium, and microbial attachment on the surfaces. Microbial attachment was not prevented by filtration. The microbial water quality obtained by pre‐ and on‐line filtration of the pressure medium was sufficient to ensure the long‐term operation of the water hydraulic system assuming that clean work practices are complied with in assembly and during the operation.© 2002 Society of Chemical Industry

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.