Abstract

Sharp bending and wrapping of DNA around proteins and nanoparticles (NPs) has been of extensive research interest. Here, we present the potential of mean force (PMF) for wrapping a DNA double helix around a cationic NP using coarse-grained models of a double-stranded DNA and a cationic NP. Starting from a NP wrapped around by DNA, the PMF was calculated along the distance between the center of the NP and one end of the DNA molecule. A relationship between the distance and the extent of DNA wrapping is used to calculate the PMF as a function of DNA wrapping around a NP. In particular, the PMF was compared for two DNA sequences of (AT)25/(AT)25 and (AC)25/(GT)25, for which the persistence lengths are different by ∼10 nm. The simulation results provide solid evidence of the thermodynamic preference for complex formation of a cationic NP with more flexible DNA over the less flexible DNA. Furthermore, we estimated the elastic energy of DNA bending, which was in good order-of-magnitude agreement with the theoretical prediction of elastic rods. This work suggests that the variation of sequence-dependent DNA flexibility can be utilized in DNA nanotechnologies, in which the position and dynamics of NPs are regulated on large-scale DNA structures, or the structural transformation of DNA is triggered by the sequence-dependent binding of NPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call