Abstract

Perovskite solar cells with inorganic and organic transporting layers offer a new venue for their commercialization due to their low cost and high-power conversion efficiency. This manuscript focuses on using inorganic calcium ferrite (CaFeO3) as a hole electron layer (HEL) and offers superior stability and efficiency compared to organic HEL. Time-resolved photoluminescence spectroscopy (TRPL) demonstrated better charge extraction and less recombination at the HEL/perovskite and EEL/perovskite interface. A theoretical investigation has been carried out to compare the experimental findings and to find the mechanism behind the observed high-power conversion efficiency. Theoretical analysis validates the experimental results with a power conversion efficiency of ∼16%. The role of HEL, EEL, and perovskite absorbing layers along with the influence of their thickness on power conversion parameters viz. short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficacy (PCE), have been investigated. The possible mechanism behind the observed result has been discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call