Abstract

ABSTRACTSeismic methods are becoming an established choice for deep mineral exploration after being extensively tested and employed for the past two decades. To investigate whether the early European mineral‐exploration datasets had potential for seismic imaging that was overlooked, we recovered a low‐fold legacy seismic dataset from the Neves–Corvo mine site in the Iberian Pyrite Belt in southern Portugal. This dataset comprises six 4–6 km long profiles acquired in 1996 for deep targeting. Using today's industry‐scale processing algorithms, the world‐class, ca. 150 Mt, Lombador massive sulphide and other smaller deposits were better imaged. Additionally, we also reveal a number of shallow but steeply dipping reflections that were absent in the original processing results. This study highlights that legacy seismic data are valuable and should be revisited regularly to take advantage of new processing algorithms and the experiences gained from processing such data in hard‐rock environments elsewhere. Remembering that an initial processing job in hard rock should always aim to first obtain an overall image of the subsurface and make reflections visible, and then subsequent goals of the workflow could be set to, for example understanding relative amplitude ratios. The imaging of the known mineralization implies that this survey could likely have been among one of the pioneer studies in the world that demonstrated the capability of directly imaging massive sulphide deposits using the seismic method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call