Abstract
In the present study, Lauryl Gallate (LG), a natural antioxidant, was used to improve polymer thermal stability and recyclability of a biodegradable polyester as poly(butylene succinate-co-adipate) (PBSA). Neat PBSA and PBSA/LG (0.5 wt% LG) blends were processed by melt extrusion and subjected to multiple consecutive extrusion cycles at 170 °C to prevent the occurrence of thermo-oxidative radical degradation processes of the polymer. Thermal, rheological, morphological, FTIR, and GPC analyses showed the beneficial effect of LG in delaying PBSA thermo-oxidative degradation, reducing polymer fragmentation at low-mid molecular weights compared to the reprocessed virgin PBSA. The use of LG limits the drop of both complex viscosity η* and zero-shear stress viscosity η0 as well as the reduction of crystallinity degree and the enhancement of melt flow rate (MFR). This molecular degradation produces low molecular weight polymer fractions and oligomers that solely affect molten PBSA fluidity. In the presence of 0.5 wt% of LG, the processability of PBSA doubles from six (neat PBSA) up to twelve extrusions until presenting the first signs of degradation of the molten polymer while preserving the mechanical characteristics at the solid state. These mechanical properties remain equivalent to the neat PBSA (Young’s modulus 0.33 GPa, yield strength 19.2 MPa, stress at break 24.4 MPa, and elongation at break 350%). Consequently, LG can be successfully employed as a natural PBSA stabilizer to extend the polymer lifecycle and contribute to the circular economy practice within the processing and manufacturing industry, particularly in the field of PBSA agricultural applications and injection moulded disposable products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.