Abstract

Autochthonous strains of lactic acid bacteria (LAB) have been isolated from traditionally homemade cheeses collected from specific ecological localities across Serbia and Montenegro. Genetic and biochemical analysis of this LAB revealed that they produce bacteriocins, proteinases and exopolysaccharides. LAB produces a variety of antimicrobial substances with potential importance for food fermentation and preservation. Apart from the metabolic end products, some strains also secrete antimicrobial substances known as bacteriocins. Among the natural isolates of LAB from homemade cheeses, bacteriocin producers were found in both lactococci and lactobacilli. Lactococcus lactis subsp. lactis BGMN1–5 was found to produce three narrow spectrum class II heat-stable bacteriocins. In addition to bacteriocin production, BGMN1–5 synthesized a cell envelope-associated proteinase (CEP) and shows an aggregation phenotype. Another isolate, L. lactis subsp. lactis BGSM1–19 produces low molecular mass (7 kDa) bacteriocin SM19 that showed antimicrobial activity against Staphylococcus aureus, Micrococcus flavus and partially against Salmonella paratyphi. Production of bacteriocin reaches a plateau after 8 h of BGSM1–19 growth. Bacteriocin SM19 retained activity within the wide pH range from 1 to 12 and after the treatment at 100 °C for 15 min. Among collection of lactobacilli, the isolate Lactobacillus paracasei subsp. paracasei BGSJ2–8 produces heat-stable bacteriocin SJ (approx. 5 kDa) polypeptide. It retained activity after treatment for 1 h at 100 °C, and in the pH range from 2 to 11. In addition to isolates from cheeses, bacteriocin-producing human oral lactobacilli were detected. Most of them showed antimicrobial activity against streptococci, staphylococci and micrococci, but not against Candida. Isolate BGHO1 that showed the highest antimicrobial activity was determined as L. paracasei. Interestingly, Lactobacillus helveticus BGRA43, which was isolated from the human intestine showed strong activity against Clostridium sporogenes, but it was not possible to detect any bacteriocin production in this isolate by using standard procedures. Further analysis of antimicrobial activity revealed that BGRA43 has a relatively broad spectrum. Lactobacilli resistant to nisin were also detected among natural isolates. They produce bacteriocins, which have no activity against nisin producing lactococci.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.