Abstract
Insects possess cellulolytic system capable of producing variegate enzymes with multifarious specificities to break down complex lignocellulosic products. Astonishingly, endoglucanases, exoglucanases and β-glycosidases act sequentially in a synergistic system to facilitate the breakdown of cellulose to utilisable energy source glucose. In silico docking studies of endo-β-1,4-glucanase from 19 different insects belonging to six different orders identified that it possesses high affinity for all the six substrates, including CMC, cellulose, cellotriose, cellotetraose, cellopentose and cellohexaose. Additionally, β-glucosidase from nearly all the reported insect sources also showed considerable affinity towards cellobiose. Van der Waals, conventional hydrogen bonds and carbon-hydrogen bonds stabilise the interaction between the enzyme and different substrates. Molecular dynamics simulations also held up the stability of various complexes. Efficient breakdown of lignocelluloses-based substrates becoming a major focus of industrial and academic communities worldwide, this study can perhaps complement the propensity of insect cellulases for prospected applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.