Abstract

Accurate monitoring of soil organic carbon (SOC) is critical for sustainable management of soil for improving its quality, function, and carbon sequestration. As a nondestructive, efficient, and low-cost technique, mid-infrared (MIR) spectroscopy has shown a great potential in rapid estimation of SOC, despite limited studies of the global scale. The objective of this work was to use a globally distributed topsoil MIR spectral library with 33,039 samples to predict SOC using different modeling methods. Effects of nine fractional-order derivatives (FODs) on the predicted accuracy of SOC were evaluated using four regression algorithms (i.e., ratio index-based linear regression, RI-LR; partial least squares regression, PLSR; Cubist; convolutional neural network, CNN). Square-root transformation to SOC data was performed to minimize the skewness and non-linearity. Results indicated FOD to capture the subtle spectral details related to SOC, leading to improved predictions that may not be possible by the raw absorbance and common integer-order derivatives. Concerning the RI-LR models, the optimal validation result for SOC was obtained by 0.75-order derivative, with the ratio of performance to inter-quartile distance (RPIQ) of 1.85. Regarding the full-spectrum modeling for SOC, the CNN outperformed PLSR and Cubist models, irrespective of raw absorbance or eight FODs; the best-performing CNN model was achieved by 1.25-order derivative (validation RPIQ = 6.33). It can be concluded that accurate estimation of SOC using large and diverse MIR spectral library at the global scale combined with deep-learning CNN model is feasible. This global-scale database is extremely valuable for us to deal with the shortage of soil data and to monitor the soils at different geographical scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call