Abstract

Extremophiles are microorganisms that flourish in habitats of extreme environments, including in high concentration of salts, pollutants, high or low temperature, an acidic or alkaline pH. All extreme environments are dominated by microorganisms belonging to Archaea, the third domain of life, evolutionary distinct from Bacteria and Eucarya. Over the past few years, the molecular biology of extremophilic Archaea has stimulated a lot of interest in the field of bioremediation. Bioremediation is the use of microorganisms for the degradation or removal of contaminants. Contamination of soils, sediments and water due to anthropogenic activities is a matter of concern at global level. Bioremediation has emerged as an effective solution for these problems. Most bioremediation research has focused on the processes performed by the domain Bacteria. Recently, extremophiles are the focus of growing interest for bioremediation because they can tolerate very harsh environmental conditions due to their ability to produce an array of molecules or extremozymes capable of functioning in the environment without denaturing. These extremozymes from extremophilic microorganisms have special characteristics such as stability to elevated temperature, extremes of pH, organic solvents and high ion strength. Due to the stability and persistence of these extremophilic microorganisms under adverse environmental conditions, they can be explored finding new species for using in the bioremediation of environments contaminated with extremely recalcitrant pollutants. Here, we provide an overview of the archaeal extremophilic microorganisms such as thermopiles, acidophiles, halophiles which have potential applications in the field of bioremediation of environmental pollutants, including hydrocarbons, heavy metals, pesticides, petroleum and wastewater treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call