Abstract

The reduction mechanisms of N2O on surfaces of P-doped carbon nanocone (CNC) and Si-doped boron nitride nanocone (BNNC) were investigated by using of density functional theory. The adsorption energies of P and Si on surfaces of CNC and BNNC were − 293.1 and − 325.7 kcal/mol, respectively. The decomposition of CNC-P–N2O and BNNC-Si–N2O and reduction of CNC-P–O* and BNNC-Si–O* by using of the CO molecule were investigated. Results show that BNNC-Si–O* has lower activation energy and higher ∆Gad than CNC-P–O*. Results show that activation energy for BNNC-Si–O* + N2O → BNNC-Si–O2 + N2 and CNC-P–O* + N2O → CNC-P–O2 + N2 reactions were 32.56 and 36.78 kcal/mol, respectively. The results show that P-doped CNC and Si-doped BNNC can be potential catalysts to reduction of N2O.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call