Abstract

Human hair dermal papillary (DP) cells comprising mesenchymal stem cells in hair follicles contribute critically to hair growth and cycle regulation. The transition of hair follicles from telogen to anagen phase is the key to regulating hair growth, which relies heavily on the activation of DP cells. In this paper, we suggested exosomes derived from bovine colostrum (milk exosomes, Milk-exo) as a new effective non-surgical therapy for hair loss. Results showed that Milk-exo promoted the proliferation of hair DP cells and rescued dihydrotestosterone (DHT, androgen hormones)-induced arrest of follicle development. Milk-exo also induced dorsal hair re-growth in mice at the level comparable to minoxidil treatment, without associated adverse effects such as skin rashes. Our data demonstrated that Milk-exo accelerated the hair cycle transition from telogen to anagen phase by activating the Wnt/β-catenin pathway. Interestingly, Milk-exo has been found to stably retain its original properties and efficacy for hair regeneration after freeze-drying and resuspension, which is considered critical to use it as a raw material applied in different types of alopecia medicines and treatments. Overall, this study highlights a great potential of an exosome from colostrum as a therapeutic modality for hair loss.

Highlights

  • Hair loss, a type of non-scarring alopecia, is characterized by defects in and loss of hair progenitor cells, and it occurs when hair follicles become smaller due to the influence of androgenic hormone

  • Many recent studies have reported that hair cycle is regulated by the interaction between mesenchymal cells and epithelial cells in hair follicles, and the Exosomes for Promoting Hair Regeneration proliferation of dermal papilla (DP) cells by the activation of PI3K/Akt/Wnt/β-catenin pathway may be the key factor (Botchkarev and Kishimoto, 2003; Kang et al, 2020)

  • We provide evidence that milk exosomes from colostrum (Milk-exo), induce impressive hair regeneration with minimal adverse effects (Figure 1) We found that Milk-exo induced the proliferation of DP cells that plays a pivotal role in controlling the growth and cycling of hair follicles

Read more

Summary

Introduction

A type of non-scarring alopecia, is characterized by defects in and loss of hair progenitor cells, and it occurs when hair follicles become smaller due to the influence of androgenic hormone (e.g., dihydrotestosterone, DHT). About 80% of Caucasian men is known to experience hair loss by the age of 70, only two androgenic alopecia treatments (minoxidil; potassium channel opener, and finasteride; inhibitor of type II 5α-reductase) are approved by the US Food and Drug Administration (FDA) (Rathnayake and Sinclair, 2010; Kelly et al, 2016). Their effects are often limited and temporary, and they are associated with various adverse effects (Wu et al, 2016; Locci and Pinna, 2017). Here we investigated the potential of exosomes derived from colostrum as a future hair regrowth therapy

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call