Abstract

BackgroundFood-borne infections cause huge economic and human life losses worldwide. The most common contaminants of foods include Listeria monocytogenes Salmonellae and Staphylococcus aureus. L. monocytogenes is most notorious due to its tolerance to common food preservation methods and the risks it poses, including higher fatality rates. Safer, more efficacious control methods are thus needed. Along with food-borne pathogens, lactic acid bacteria (LAB) can also be found in foods. Some LAB isolates inhibit pathogenic bacteria by various mechanisms, including by production of antimicrobial metabolites.MethodsThe potential of cell-free culture supernatants (CFS) derived from broth cultures of selected local LAB and yeast isolates, some of which were subjected to various treatments, were tested for inhibition of L. monocytogenes, Salmonella spp. and S. aureus in in vitro culture by incorporating various proportions of the CFSs into the growth medium concurrently with inoculation (co-cultures) or following limited proliferation after inoculation of the pathogens (delayed cultures). The effects of the CFSs on various growth parameters were assessed.ResultsCFS from the LAB isolates were strongly inhibitory when co-cultured. The inhibitory activities were stable following heat or protease treatment of the CFSs. Inhibitory activity was dependent primarily on active substance(s) secreted into the supernatant. In all co-cultures, CFS proportion-dependent progressive decrease in the number of colonies was observed and both growth rates and number of generations were reduced with significantly fewer numbers of colony forming units, whereas generation times were significantly increased compared to those of controls. Transfer from co-cultures to fresh broth showed inhibited cultures contained bacteria that can re-grow, indicating the presence of viable bacteria that are undetectable by culture. Growth rates in CFS-treated delayed cultures were also reduced to varying degrees with the number of colonies in some cultures being significantly less than the corresponding control values. CFSs were active against both Gram-positive and –negative bacteria.ConclusionsActive metabolites produced and secreted by LAB into the growth medium were effective in inhibiting the tested pathogens. Early addition of the CFSs was necessary for significant inhibition to occur. Further studies will help make these findings applicable to food safety.

Highlights

  • Food-borne infections cause huge economic and human life losses worldwide

  • Four isolates whose Cell-free supernatant (CFS) inhibited the bacteria when tested individually were selected based on this initial observation

  • CFS3 and CFS4 obtained from the four selected isolates and the Labmix exhibited inhibitory activity; i.e., pH-adjusted CFSs were ineffective in inhibition

Read more

Summary

Introduction

Food-borne infections cause huge economic and human life losses worldwide. Food-borne infections cause huge economic losses, in addition to morbidity and mortality. Listeria monocytogenes and nontyphoidal Salmonella enterica ranked among the top five identifiable pathogens causing these human and economic losses [1]. L. monocytogenes is exceptional in that it can tolerate high salt concentrations, remains viable at temperatures as low as 0°C, and is difficult to eliminate by ordinary disinfectants [4,5]. It can be found as a contaminant in meat, milk and other food-processing facilities. The infectious dose is unknown but the case fatality rate has been reported to be 20-40% [6,7], which is much higher than the fatality rate of salmonellosis, the incidence rate of which is, in turn, much higher than listeriosis [6,7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call