Abstract
The cultivation of cassava (Manihot esculenta) is widely spread in a variety of tropical countries with an estimated annual production of 291.9 million tons. The crop is the most important source of carbohydrates in producing countries. In Malaysia, cassava is mainly cultivated for starch production. Despite the economic and nutritional importance of cassava, there is only limited knowledge available regarding the overall environmental impacts of cassava starch production or the production of alternative food products like cassava crisps. This study presents an environmental assessment of different scenarios of cassava production and processing by a life cycle assessment (LCA) approach. The results indicate that the environmental impacts of cassava-based products can be reduced considerably with the utilization of processing residues for anaerobic digestion if the resulting biogas is used for the production of electricity and heat. In the industrial scenario, the results indicate that the highest relative reductions are achieved for cumulated energy demand (CED), global warming potential (GWP) and deforestation (DEF) with −39%, −26% and −18%, respectively, while in the advanced scenario, environmental impacts for CED, GWP, ozone formation potential (OFP) and water stress index (WSI) can be reduced by more than 10% with −281%, −37%, −16% and −14%, respectively. The impacts for global warming potential found in this study are slightly higher compared to other studies that focused on the carbon footprint of starch production from cassava, while the savings due to biogas production are similar.
Highlights
The cultivation of cassava (Manihot esculenta) is widely spread in a variety of tropical countries with an estimated annual production of 291.9 million tons [1]
This study presents an environmental assessment of different scenarios of cassava production and processing by a life cycle assessment (LCA) approach
Impacts from cassava cultivation are expressed per kg of harvested cassava root and a distinction is made between the following contribution groups: (i) direct field emissions, (ii) mineral fertilizer production, (iii) field work processes, (iv) pesticide production, (v) transport, and (vi) the burning of cassava leaves
Summary
The cultivation of cassava (Manihot esculenta) is widely spread in a variety of tropical countries with an estimated annual production of 291.9 million tons [1]. Cassava products are used for human nutrition, animal feed as well as for industrial applications and energy supply [2]. Both the roots and leaves of cassava can be used as food. The crop is the most important source of carbohydrates in producing countries and it can contribute to the supply of proteins, micronutrients and minerals [3]. The latter nutrients are mainly provided by cassava leaves, if consumed. As reported by Vetter [4], both cassava roots and leaves contain cyanogenic components that vary in concentration according to genetic variety and growth stage and need to be detoxified before utilization in animal or human nutrition
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.