Abstract

Abstract Waterflood in low permeability carbonate reservoirs (<50 mD) leaves behind a substantial amount of oil due to capillary trapping and poor sweep. Addition of polymer to the injected water increases the viscosity of the aqueous phase and decreases the mobility ratio, thus, improving the sweep efficiency and oil production from the tight formations. Performance of current synthetic EOR polymers is limited by salinity, temperature and injectivity issues in low permeability formations. Mechanical shear degradation can be applied to high molecular weight synthetic polymers to improve the injectivitiy; but makes the process less economical due to significant viscosity loss and consequent increase in polymer dosage. Recently, a different class of polymer has been developed called "hydrophobically modified associative polymers (AP)". The primary goal of this work is to investigate the performance of associative polymers in low permeability carbonate reservoirs. We compare the performance of associative polymers with that of conventional HPAM polymers in low permeability formations. A low molecular weight associative polymer was investigated as part of this study. A detailed study of polymer rheology and the effect of salinity at the reservoir temperature (60 °C) was performed. Additional experiments were performed in bulk and porous media to investigate the synergy of associative polymers with hydrophilic surfactant blends at different brine salinities. Single phase polymer flow experiments were performed in outcrop Edwards Yellow and Indiana limestone cores of low permeability to determine the optimum polymer concentration to achieve the desired in-situ resistance factor (or apparent viscosity). Similar experiments were performed with HPAM polymer for a comparative study. Results showed successful transport of this associative polymer in low permeability formations after a small degree of shear degradation. The resistance factors for the associative polymer were higher than those for HPAM. Shear degraded polymers showed significant improvement in polymer transport in lower permeability cores with reduction in RRF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.