Abstract

Araucaria angustifolia bark (AA-bark), a waste generated in wood processing, was evaluated as a potential adsorbent to remove Gentian Violet (GV) dye from aqueous solutions. The AA-bark presented an amorphous structure with irregular surface and was composed mainly of lignin and holocellulose. These characteristics indicated that the adsorbent contains available sites to accommodate the dye molecules. The GV adsorption on AA-bark was favored at pH 8.0 with adsorbent dosage of 0.80 g L-1. Pseudo-nth order model was adequate to represent the adsorption kinetics of GV on AA-bark. A fast adsorption rate was verified, with the equilibrium being attained within 30 min. Equilibrium data were well represented by the Langmuir model. The maximum adsorption capacity was 305.3 mg g-1. Adsorption was spontaneous, favorable and endothermic. AA-bark was able to treat a simulated dye house effluent, reaching color removal values of 80%. An excellent performance was found in fixed bed experiments, where the length of the mass transfer zone was only 5.38 cm and the breakthrough time was 138.5 h. AA-bark can be regenerated two times using HNO3 0.5 mol L-1. AA-bark can be used as a low-cost material to treat colored effluents in batch and fixed bed adsorption systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.