Abstract

In the traditional combined cooling, heating, and power (CCHP) systems, the frequently changed user loads result in unfavorable supply-demand matching characteristics, which weakens the practical operational regulation performance. In this work, the thermochemical recuperation (TCR) with syngas storage method is proposed to optimize the system regulation characteristics and enhance the waste heat recovery. Various building energy load scenarios are also adopted to comprehensively evaluate the modified CCHP system operation characterizes. Meanwhile, with the consideration of reasonable operation regulation of syngas storage and multi-energy demands supplementary between different buildings, the coordinated system energy scheduling capacity are deeply explored to investigate the practical system application feasibility. The results indicate that under the designated operating conditions, the cooling/heating-to-power output ratios have been adjusted from 2.45 and 2.73 to 0.24–2.55 and 0.64–2.85, respectively. Additionally, with the efficient operation regulation process of TCR and syngas storage, the annual average energy utilization efficiency of the hotel, hospital, office and shopping center will be increased by 3.88%, 3.85%, 4.50% and 3.98%. Besides, through the synergistic complementary of syngas storage and adjustment between shopping center and hospital, the annual average syngas storage utilization rate of the shopping center can be increased from 16.99% to 97.41%, with the annual fuel consumption reduction of 5.78% in hospital scenario. This paper provides a combined TCR and syngas storage regulation method for the CCHP system, which enhances the system energy output flexibility and waste heat recovery capabilities in the distributed energy system application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.