Abstract

Ammoniacal nitrogen is considered as one of the major pollutants of the leachate generated from the landfill site and has the potential to deteriorate the environment as well as health. Considering this, locally available agricultural waste, i.e., sugarcane bagasse ash, was employed as an adsorbent for the removal of ammoniacal nitrogen from landfill leachate. Batch-mode experiments were conducted to see the effect of dose (2-60 g L-1), pH (2-12), and temperature (20-60 °C) on ammoniacal nitrogen adsorption. Application of sugarcane bagasse ash showed 60% removal of ammoniacal nitrogen (50 mg L-1 strength) at an optimum dose of 20 g L-1 and 180 min of contact time with an adsorption capacity of 0.31 mg g-1. The Langmuir adsorption model was found to be best fit at 40 °C with R2 = 0.944, depicting a monolayer coverage of ammoniacal nitrogen onto sugarcane bagasse ash. According to the result, solute uptake rate could be well described by the pseudo-second-order model (R2 = 0.928), whereas the intraparticle diffusion model and Boyd plot indicated that the overall adsorption rate is governed by the external mass transfer. Thermodynamic studies revealed that adsorption is feasible, spontaneous, and endothermic in nature. Hence, the study shows that sugarcane bagasse ash could turn out to be a cost-effective adsorbent for the removal of ammoniacal nitrogen from leachate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.