Abstract

BackgroundHypercholesterolemia has posed a serious threat of heart diseases and stroke worldwide. Xanthine oxidase (XO), the rate-limiting enzyme in uric acid biosynthesis, is regarded as the root of reactive oxygen species (ROS) that generate atherosclerosis and cholesterol crystals. β-Hydroxy β-methylglutaryl-coenzyme A reductase (HMGR) is a rate-limiting enzyme in cholesterol biosynthesis. Although some commercially available enzyme inhibiting drugs have effectively reduced cholesterol levels, most of them have failed to meet potential drug candidates’ requirements. Here, we have carried out an in-silico analysis of secondary metabolites that have already shown good inhibitory activity against XO and HMGR in a wet lab setup.MethodsOut of 118 secondary metabolites reviewed, sixteen molecules inhibiting XO and HMGR were selected based on the IC50 values reported in in vitro assays. Further, receptor-based virtual screening was carried out against secondary metabolites using GOLD Protein-Ligand Docking Software, combined with subsequent post-docking, to study the binding affinities of ligands to the enzymes. In-silico ADMET analysis was carried out to explore their pharmacokinetic properties, followed by toxicity prediction through ProTox-II.ResultsThe molecular docking of amentoflavone (GOLD score 70.54, ∆G calc. = − 10.4 Kcal/mol) and ganomycin I (GOLD score 59.61, ∆G calc. = − 6.8 Kcal/mol) displayed that the drug has effectively bound at the competitive site of XO and HMGR, respectively. Besides, 6-paradol and selgin could be potential drug candidates inhibiting XO. Likewise, n-octadecanyl-O-α-D-glucopyranosyl (6′ → 1″)-O-α-D-glucopyranoside could be potential drug candidates to maintain serum cholesterol. In-silico ADMET analysis has shown that these sixteen metabolites were optimal within the categorical range compared to commercially available XO and HMGR inhibitors, respectively. Toxicity analysis through ProTox-II revealed that 6-gingerol, ganoleucoin K, and ganoleucoin Z are toxic for human use.ConclusionThis computational analysis supports earlier experimental evidence towards the inhibition of XO and HMGR by natural products. Further study is necessary to explore the clinical efficacy of these secondary molecules, which might be alternatives for the treatment of hypercholesterolemia.

Highlights

  • Hypercholesterolemia has posed a serious threat of heart diseases and stroke worldwide

  • We have focused on potential Hydroxy β-methylglutaryl-coenzyme A reductase (HMGR) and Xanthine oxidase (XO) inhibitors, based on natural products, which are considered as the wellspring of biologically and pharmacologically active sources of secondary metabolites [32, 33]

  • In the beginning, a dataset was prepared based on a literature review taking IC50 values of in-vitro enzyme inhibition assays with HMGR and XO by natural products

Read more

Summary

Introduction

Hypercholesterolemia has posed a serious threat of heart diseases and stroke worldwide. Β-Hydroxy β-methylglutaryl-coenzyme A reductase (HMGR) is a rate-limiting enzyme in cholesterol biosynthesis. Cholesterol acquired via de novo synthesis (600–900 mg/ day) & diet (300–500 mg/day), transported via blood, and excreted through bile acid biosynthesis (500–600 mg/day) and as biliary cholesterol (600 mg/day) are the major aspects of its homeostasis in human [3, 4]. Several elements, such as age, gender, human genetics, dietary habits, physical activity, and metabolic disorder, have affected cholesterol levels [5]. From a therapeutic point of view, the regulations of total serum cholesterol and triglycerides have gained much heed against hyperlipidemia [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call