Abstract

Liquid fossil fuels, collectively known as total petroleum hydrocarbons (TPHs), are highly toxic and frequently leak into subsurface environments due to anthropogenic activities. As an in-situ biological remedial option for TPH contamination, aerobic TPH biodegradation is limited due to oxygen's low solubility in water, and because it is consumed quickly by aerobic bacteria. Thus, we investigated the potential of anaerobic TPH degradation by indigenous fermenting bacteria and Fe(III)-reducing bacteria. Twenty 6–10 m soil cores were collected from a closed military base subject to ongoing TPH contamination since the 1980s. Physicochemical and microbial properties were determined at 0.5-m intervals in each core. To assess the relationship between TPH degradation and microbial Fe(III) reduction, soil samples were grouped into high-TPH (>500 mg kg−1) and high-Fe(II) (>450 mg kg−1), high-TPH and low-Fe(II), low-TPH and high-Fe(II), and low-TPH and low-Fe(II) groups. Alpha diversity was significantly lower in high-TPH groups than in low-TPH groups, suggesting that high TPH concentrations exerted a strong selective pressure on bacterial communities. In the high-TPH and low-Fe(II) group, fermenting bacteria, including Microgenomatia and Chlamydiae, were more abundant, suggesting that TPH biodegradation occurred via fermentation. In the high-TPH and high-Fe(II) group, Fe(III)-reducing bacteria, including Geobacter and Zoogloea, were more abundant, suggesting that microbial Fe(III) reduction enhances TPH biodegradation. In contrast, the fermenting and/or Fe(III)-reducing bacteria were not statistically abundant in the low-TPH groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call