Abstract

This study investigated how visual feedback of virtual error reduction (ER) modified the visuomotor performance of older adults with limited attentional capacity. Error structures of young and older adults during birhythmic force tracking were contrasted when the visualized error size was exact or half of the actual size. As compared with full-size error feedback, ER feedback improved the force tracking symmetry of older adults, but undermined that of young adults. Extended Poincaré analysis revealed that young adults presented greater short-term error variability (mean value of κ-lagged SD1 of the error signal) with ER feedback, which led to a smaller mean value of κ-lagged SD1 of the error signal for older adults. The ER-related task improvement of the older adults was negatively correlated with the size of the tracking errors with real error feedback and positively correlated with ER-related increases in force spectral symmetry and decreases in the mean value of κ-lagged SD1 of the error signal. ER feedback could advance visuomotor tasks for older adults who perform worse with full-size visual feedback by the enhancement of self-efficacy and stabilization of negative internal feedback.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.