Abstract
Due to continuous plantation of poplar, its growth and biomass accumulation may be negatively affected by the accumulation of allelochemicals such as para-hydroxybenzoic acid (pHBA) in soil. As photosynthesis is the most fundamental process in plants, it can be negatively impacted by pHBA stress. Therefore, it is crucial to improve photosynthetic capacity under pHBA stress to facilitate poplar plant growth. The mitogen-activated protein kinase (MAPK) cascade pathway is widely involved in environmental stress responses in plants. However, the regulation mechanisms of photosynthesis-related pathways by MAPK pathway genes under pHBA stress are still unclear. In this study, through transcriptome analysis and weighted gene co-expression network analysis, we observed that PeMPK7 overexpression in poplar can regulate the expression of photosynthesis-related genes and transcription factor genes, namely, WRKY1, WRKY33, and ERF3, during the early stage of pHBA stress. In addition, PeMPK7 can improve photosynthesis in poplar under long-term pHBA stress. Moreover, yeast two-hybrid and pull-down assays confirmed the interaction between PeMPK7 and PeMKK7/10. Based on these results, a schematic diagram of the pathways involved in the regulation of photosynthesis by PeMPK7 was constructed. This study provided novel insights into the molecular mechanisms of regulation of pHBA stress via MAPK cascade pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.